Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.03.11.583978

ABSTRACT

The rapid evolution of SARS-CoV-2 variants presents a constant challenge to the global vaccination effort. In this study, we conducted a comprehensive investigation into two newly emerged variants, BA.2.87.1 and JN.1, focusing on their neutralization resistance, infectivity, antigenicity, cell-cell fusion, and spike processing. Neutralizing antibody (nAb) titers were assessed in diverse cohorts, including individuals who received a bivalent mRNA vaccine booster, patients infected during the BA.2.86/JN.1-wave, and hamsters vaccinated with XBB.1.5-monovalent vaccine. We found that BA.2.87.1 shows much less nAb escape from WT-BA.4/5 bivalent mRNA vaccination and JN.1-wave breakthrough infection sera compared to JN.1 and XBB.1.5. Interestingly. BA.2.87.1 is more resistant to neutralization by XBB.15-monovalent-vaccinated hamster sera than BA.2.86/JN.1 and XBB.1.5, but efficiently neutralized by a class III monoclonal antibody S309, which largely fails to neutralize BA.2.86/JN.1. Importantly, BA.2.87.1 exhibits higher levels of infectivity, cell-cell fusion activity, and furin cleavage efficiency than BA.2.86/JN.1. Antigenically, we found that BA.2.87.1 is closer to the ancestral BA.2 compared to other recently emerged Omicron subvariants including BA.2.86/JN.1 and XBB.1.5. Altogether, these results highlight immune escape properties as well as biology of new variants and underscore the importance of continuous surveillance and informed decision-making in the development of effective vaccines.

2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.09.11.557206

ABSTRACT

Evolution of SARS-CoV-2 requires the reassessment of current vaccine measures. Here, we characterized BA.2.86 and the XBB-lineage variant FLip by investigating their neutralization alongside D614G, BA.1, BA.2, BA.4/5, XBB.1.5, and EG.5.1 by sera from 3-dose vaccinated and bivalent vaccinated healthcare workers, XBB.1.5-wave infected first responders, and monoclonal antibody (mAb) S309. We assessed the biology of the variant Spikes by measuring viral infectivity and membrane fusogenicity. BA.2.86 is less immune evasive compared to FLip and other XBB variants, consistent with antigenic distances. Importantly, distinct from XBB variants, mAb S309 was unable to neutralize BA.2.86, likely due to a D339H mutation based on modeling. BA.2.86 had relatively high fusogenicity and infectivity in CaLu-3 cells but low fusion and infectivity in 293T-ACE2 cells compared to some XBB variants, suggesting a potentially differences conformational stability of BA.2.86 Spike. Overall, our study underscores the importance of SARS-CoV-2 variant surveillance and the need for updated COVID-19 vaccines.


Subject(s)
COVID-19
3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.08.30.555188

ABSTRACT

Immune evasion by SARS-CoV-2 paired with immune imprinting from monovalent mRNA vaccines has resulted in attenuated neutralizing antibody responses against Omicron subvariants. In this study, we characterized two new XBB variants rising in circulation: EG.5.1 and XBB.2.3, for their ability of neutralization and syncytia formation. We determined the neutralizing antibody in sera of individuals that received a bivalent mRNA vaccine booster, BA.4/5 wave infection, or XBB.1.5 wave infection. Bivalent vaccination-induced antibodies neutralized efficiently ancestral D614G, but to a much less extent, two new EG.5.1 and XBB.2.3 variants. In fact, the enhanced neutralization escape of EG.5.1 appeared to be driven by its key defining mutation XBB.1.5-F456L. Notably, infection by BA.4/5 or XBB.1.5 afforded little, if any, neutralization against EG.5.1, XBB.2.3 and previous XBB variants, especially in unvaccinated individuals, with average neutralizing antibody titers near the limit of detection. Additionally, we investigated the infectivity, fusion activity, and processing of variant spikes for EG.5.1 and XBB.2.3 in HEK293T-ACE2 and CaLu-3 cells, but found no significant differences compared to earlier XBB variants. Overall, our findings highlight the continued immune evasion of new Omicron subvariants and, more importantly, the need to reformulate mRNA vaccines to include XBB spikes for better protection.

4.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2879035.v1

ABSTRACT

The Tistrella genus can produce the cyclic depsipeptide didemnin B, but the biosynthetic origin of its analogue, plitidepsin, remains unknown. Plitidepsin is an approved anticancer drug and an anti-COVID-19 agent in phase III clinical trials. Here, we employed a novel approach that combined microbial and chemical synthesis to produce plitidepsin. We first investigated the global distribution of Tistrella, which inspired us to retrieve and screen a library of Tistrella. Using a genetic approach and heterologous expression, we, for the first time, experimentally confirmed the biosynthetic gene cluster (BGC) for didemnins. After duplication of the BGC, we obtained a yield of didemnin B reached to 70 mg/L in the engineered strain. We then developed two chemical strategies to convert didemnin B to plitidepsin, one of which resulted in over 90% overall yield in a one-step synthetic route. Additionally, we synthesized two new didemnin analogues and assessed their anticancer and antiviral activities. Our study provides a practical and sustainable solution for producing plitidepsin and its derivatives, which may expedite didemnin drug development.


Subject(s)
COVID-19
5.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.01.16.524244

ABSTRACT

Newly emerging Omicron subvariants continue to emerge around the world, presenting potential challenges to current vaccination strategies. This study investigates the extent of neutralizing antibody escape by new subvariants XBB.1.5, CH.1.1, and CA.3.1, as well as their impacts on spike protein biology. Our results demonstrated a nearly complete escape of these variants from neutralizing antibodies stimulated by three doses of mRNA vaccine, but neutralization was rescued by a bivalent booster. However, CH.1.1 and CA.3.1 variants were highly resistant to both monovalent and bivalent mRNA vaccinations. We also assessed neutralization by sera from individuals infected during the BA.4/5 wave of infection and observed similar trends of immune escape. In these cohorts, XBB.1.5 did not exhibit enhanced neutralization resistance over the recently dominant BQ.1.1 variant. Notably, the spike proteins of XBB.1.5, CH.1.1, and CA.3.1 all exhibited increased fusogenicity compared to BA.2, correlating with enhanced S processing. Overall, our results support the administration of new bivalent mRNA vaccines, especially in fighting against newly emerged Omicron subvariants, as well as the need for continued surveillance of Omicron subvariants.

6.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.19.512891

ABSTRACT

Continued evolution of SARS-CoV-2 has led to the emergence of several new Omicron subvariants including BQ.1, BQ.1.1, BA.4.6, BF.7 and BA.2.75.2. Here we examine the neutralization resistance of these subvariants as well as their ancestral BA.4/5, BA.2.75 and D614G variants against sera from 3-dose vaccinated health care workers, hospitalized BA.1-wave patients, and BA.5-wave patients. We found enhanced neutralization resistance in all new subvariants, especially the BQ.1 and BQ.1.1 subvariants driven by a key N460K mutation and to a lesser extent, R346T and K444T mutations, as well as the BA.2.75.2 subvariant driven largely by its key F486S mutation. The BQ.1 and BQ.1.1 subvariants also exhibited enhanced fusogenicity and S processing dictated by the key N460K mutation. Interestingly, the BA.2.75.2 subvariant saw an enhancement by the F486S mutation and a reduction by the D1199N mutation to its fusogenicity and S processing resulting in minimal overall change. Molecular modelling revealed the mechanisms of receptor-binding and non-receptor binding monoclonal antibody-mediated immune evasion by R346T, K444T, F486S and D1199N mutations. Altogether, these findings shed light on the concerning evolution of newly emerging SARS-CoV-2 Omicron subvariants.

7.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.15.512322

ABSTRACT

The rapid spread and strong immune evasion of the SARS-CoV-2 Omicron subvariants has raised serious concerns for the global COVID-19 pandemic. These new variants exhibit reduced fusogenicity and increased endosomal entry pathway utilization compared to the ancestral D614G variant, the underlying mechanisms of which remain elusive. Here we show that the C-terminal S1 mutations of the BA.1.1 subvariant, H655Y and T547K, critically govern the low fusogenicity of Omicron. Notably, H655Y also dictates the enhanced endosome entry pathway utilization. Mechanistically, T547K and H655Y likely stabilize the spike trimer conformation, as shown by increased molecular interactions in structural modeling as well as reduced S1 shedding. Importantly, the H655Y mutation also determines the low fusogenicity and high dependence on the endosomal entry pathway of other Omicron subvariants, including BA.2, BA.2.12.1, BA.4/5 and BA.2.75. These results uncover mechanisms governing Omicron subvariant entry and provide insights into altered Omicron tissue tropism and pathogenesis.


Subject(s)
COVID-19
9.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.14.503921

ABSTRACT

The newly emerged BA.2.75 SARS-CoV-2 variant exhibits an alarming 9 additional mutations in its spike (S) protein compared to the ancestral BA.2 variant. Here we examine the neutralizing antibody escape of BA.2.75 in mRNA-vaccinated and BA.1-infected individuals, as well as the molecular basis underlying functional changes in the S protein. Notably, BA.2.75 exhibits enhanced neutralization resistance over BA.2, but less than the BA.4/5 variant. The G446S and N460K mutations of BA.2.75 are primarily responsible for its enhanced resistance to neutralizing antibodies. The R493Q mutation, a reversion to the prototype sequence, reduces BA.2.75 neutralization resistance. The mutational impact is consistent with their locations in common neutralizing antibody epitopes. Further, the BA.2.75 variant shows enhanced cell-cell fusion over BA.2, driven largely by the N460K mutation, which enhances S processing. Structural modeling revealed a new receptor contact introduced by N460K, supporting a mechanism of potentiated receptor utilization and syncytia formation.

10.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.21.501010

ABSTRACT

The recent emergence of the SARS-CoV-2 BA.4/5 and BA.2.12.1 variants has led to rising COVID-19 case numbers and concerns over the continued efficacy of mRNA booster vaccination. Here we examine the durability of neutralizing antibody (nAb) responses against these SARS-CoV-2 Omicron subvariants in a cohort of health care workers 1-40 weeks after mRNA booster dose administration. Neutralizing antibody titers fell by ~1.5-fold 4-6 months and by ~2.5-fold 7-9 months after booster dose, with average nAb titers falling by 11-15% every 30 days, far more stable than two dose induced immunity. Notably, nAb titers from booster recipients against SARS-CoV-2 BA.1, BA.2.12.1, and BA.4/5 variants were ~4.7-, 7.6-, and 13.4-fold lower than against the ancestral D614G spike. However, the rate of waning of booster dose immunity was comparable across variants. Importantly, individuals reporting prior infection with SARS-CoV-2 exhibited significantly higher nAb titers compared to those without breakthrough infection. Collectively, these results highlight the broad and stable neutralizing antibody response induced by mRNA booster dose administration, implicating a significant role of virus evolution to evade nAb specificity, versus waning humoral immunity, in increasing rates of breakthrough infection.


Subject(s)
Breakthrough Pain , COVID-19
11.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.16.492158

ABSTRACT

The rising case numbers of the SARS-CoV-2 Omicron BA.4, BA.5, and BA.2.12.1 subvariants has generated serious concern about the course of the pandemic. Here we examine the neutralization resistance, infectivity, processing, and fusogenicity of spike from the BA.4/5 and BA.2.12.1 SARS-CoV-2 variants compared with other Omicron subvariants and Delta. Critically, we found that the new Omicron subvariants BA.4/5 and BA.2.12.1 were more resistant to neutralization by mRNA-vaccinated and boosted health care worker sera and Omicron-BA.1-wave patient sera than were the BA.1 and BA.2 variants. Interestingly, Delta-wave patient sera neutralized more efficiently against not only Delta but also BA.4/5 and BA.2.12.1 variants that also contain substitutions at position L452, similar to Delta. The BA.4/5 and BA.2.12.1 variants also exhibited higher fusogenicity, and increased spike processing, dependent on the L452 substitution. These results highlight the key role of the L452R and L452Q mutations in BA.4/5 and BA.2.12.1 subvariants.

12.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.16.472934

ABSTRACT

The SARS-CoV-2 B.1.1.529/Omicron variant was first characterized in South Africa and was swiftly designated a variant of concern. Of great concern is its high number of mutations, including 30-40 mutations in the virus spike (S) protein compared to 7-10 for other variants. Some of these mutations have been shown to enhance escape from vaccine-induced immunity, while others remain uncharacterized. Additionally, reports of increasing frequencies of the Omicron variant may indicate a higher rate of transmission compared to other variants. However, the transmissibility of Omicron and its degree of resistance to vaccine-induced immunity remain unclear. Here we show that Omicron exhibits significant immune evasion compared to other variants, but antibody neutralization is largely restored by mRNA vaccine booster doses. Additionally, the Omicron spike exhibits reduced receptor binding, cell-cell fusion, S1 subunit shedding, but increased cell-to-cell transmission, and homology modeling indicates a more stable closed S structure. These findings suggest dual immune evasion strategies for Omicron, due to altered epitopes and reduced exposure of the S receptor binding domain, coupled with enhanced transmissibility due to enhanced S protein stability. These results highlight the importance of booster vaccine doses for maintaining protection against the Omicron variant, and provide mechanistic insight into the altered functionality of the Omicron spike protein.

13.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.01.446579

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible coronavirus responsible for the global COVID-19 pandemic. Herein we provide evidence that SARS-CoV-2 spreads through cell-cell contact in cultures, mediated by the spike glycoprotein. SARS-CoV-2 spike is more efficient in facilitating cell-to-cell transmission than SARS-CoV spike, which reflects, in part, their differential cell-cell fusion activity. Interestingly, treatment of cocultured cells with endosomal entry inhibitors impairs cell-to-cell transmission, implicating endosomal membrane fusion as an underlying mechanism. Compared with cell-free infection, cell-to-cell transmission of SARS-CoV-2 is refractory to inhibition by neutralizing antibody or convalescent sera of COVID-19 patients. While ACE2 enhances cell-to-cell transmission, we find that it is not absolutely required. Notably, despite differences in cell-free infectivity, the variants of concern (VOC) B.1.1.7 and B.1.351 have similar cell-to-cell transmission capability. Moreover, B.1.351 is more resistant to neutralization by vaccinee sera in cell-free infection, whereas B.1.1.7 is more resistant to inhibition by vaccine sera in cell-to-cell transmission. Overall, our study reveals critical features of SARS-CoV-2 spike-mediated cell-to-cell transmission, with important implications for a better understanding of SARS-CoV-2 spread and pathogenesis.


Subject(s)
COVID-19
15.
Computers, Environment and Urban Systems ; 88:101629, 2021.
Article in English | ScienceDirect | ID: covidwho-1174184

ABSTRACT

Social sensing is an analytical method to study the interaction between human and space through extracting reliable information from massive volunteered information data. During the ongoing COVID-19 pandemic, there are a large number of Internet social sensing data. However, most of them lack geographic attribute. In order to resolve this problem, this paper proposes a convolutional neural network geographic classification model based on keyword extraction and synonym substitution (KE-CNN) which could determine the geographic attribute by extracting the semantic features from text data. Besides, we realizes the non-contact pandemic social sensing and construct the co-word complex network by capturing the spatiotemporal behaviour of a large number of people. Our research found that (1) mining co-word network can obtain most public opinion information of pandemic events, (2) KE-CNN model improves the accuracy by 5%–15% compared with the traditional machine learning method. Through this method, we could effectively establish medical, catering, railway station, education and other types of text feature set, supplement the missing spatial data tags, and achieve a good geographical seamless social sensing.

16.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.02.20166819

ABSTRACT

Rapid and specific antibody testing is crucial for improved understanding, control, and treatment of COVID-19 pathogenesis. Herein, we describe and apply a rapid, sensitive, and accurate virus neutralization assay for SARS-CoV-2 antibodies. The new assay is based on an HIV-1 lentiviral vector that contains a secreted intron Gaussia luciferase or secreted Nano-luciferase reporter cassette, pseudotyped with the SARS-CoV-2 spike (S) glycoprotein, and is validated with a plaque reduction assay using an authentic, infectious SARS-CoV-2 strain. The new assay was used to evaluate SARS-CoV-2 antibodies in serum from individuals with a broad range of COVID-19 symptoms, including intensive care unit (ICU) patients, health care workers (HCWs), and convalescent plasma donors. The highest neutralizing antibody titers were observed among ICU patients, followed by general hospitalized patients, HCWs and convalescent plasma donors. Our study highlights a wide phenotypic variation in human antibody responses against SARS-CoV-2, and demonstrates the efficacy of a novel lentivirus pseudotype assay for high-throughput serological surveys of neutralizing antibody titers in large cohorts.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
17.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.14.20060160

ABSTRACT

The sudden outbreak of the severe acute respiratory syndrome-coronavirus (SARS-CoV-2) has spread globally with more than 1,300,000 patients diagnosed and a death toll of 70,000. Current genomic survey data suggest that single nucleotide variants (SNVs) are abundant. However, no mutation has been directly linked with functional changes in viral pathogenicity. Here we report functional characterizations of 11 patient-derived viral isolates, all of which have at least one mutation. Importantly, these viral isolates show significant variation in cytopathic effects and viral load, up to 270-fold differences, when infecting Vero-E6 cells. We observed intrapersonal variation and 6 different mutations in the spike glycoprotein (S protein), including 2 different SNVs that led to the same missense mutation. Therefore, we provide direct evidence that the SARS-CoV-2 has acquired mutations capable of substantially changing its pathogenicity.


Subject(s)
Coronavirus Infections
18.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.28.20040204

ABSTRACT

COVID-2019 is broken out in China. It becomes a severe public health disaster in one month. Find the period in which the spreading of COVID-2019 was overlooked, and understand the epidemiological characteristics of COVID-2019 in the period will provide valuable information for the countries facing the threats of COVID-2019. The most extensive epidemiological analysis of COVID-2019 shows that older people have lower infection rates compared to middle-aged persons. Common sense is that older people prefer to report their illness and get treatment from the hospital compared to middle-aged persons. We propose a hypothesis that when the spreading of COVID-2019 was overlooked, we will find more older cases than the middle-aged cases. At first, we tested the hypothesis with 4597 COVID-2019 infected samples reported from 26th Nov 2019 to 17th Feb 2020 across the mainland of China. We found that 19th Jan 2020 is a critical time point. Few samples were reported before that day, and most of them were older ones. Then samples were explosively increased after that day, and many of them were middle-aged people. We have demonstrated the hypothesis to this step. Then, we grouped samples by their residences(provinces). We found that, in the provinces of Hubei and Guangdong, the ages of samples reported before 19th Jan 2020 are significantly higher than the ages of samples reported after that day. It suggests the COVID-2019 may be spreading in Hubei and Guangdong provinces before 19th Jan 2020 while people were unconscious of it. At last, we proposed that the ages distribution of each-day-reported samples could serve as a warning indicator of whether all potential COVID-2019 infected people are found. We think the power of our analysis is limit because 1. the work is data-driven, and 2. only ~5% of the COVID-2019 infected people in China are included in the study. However, we believe it still shows some value for its ability to estimate the possible unfound COVID-2019 infected people.

19.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-16992.v1

ABSTRACT

A novel coronavirus (COVID-2019) was first identified in Wuhan, Hubei Province, and then spreads to the other Provinces of China. COVID-2019 was reported to share the same receptor, Angiotensin-converting enzyme 2 (ACE2), with SARS-CoV. But the infection rate of COVID-2019 is much higher than SARS-CoV. The biophysical and structural evidence showed that the COVID-2019 binds ACE2 with 10~20 times affinity than SARS-CoV. TMPRSS2 cleaves ACE2 and facilitates the entry of the virus into host cells. The presence of SLC6A19 may block the access of TMPRSS2 to the cutting site on ACE2 and weaken the entry of COVID-2019 into host cells. Here based on the public single-cell RNA-Seq datasets, we analyzed the ACE2 expression in the nasal, mouth, lung, and colon tissues. We find that the number of ACE2-expressing cells in the nasal and mouth tissues is comparable to the number of ACE2-expressing cells in the lung and colon tissues. We also find that ACE2 tends to be co-expressed with TMPRSS2 and not co-expressed with SLC6A19 in the nasal and mouth tissues. With the results, we infer that nasal and mouth tissues may be the first host cells of COVID-2019 infection. In our previous report in medRxiv and a recurrent report in New England Journal of Medicine, the COVID-2019 load tends to be higher in the nasal-swabs than in throat-swabs. We believe the roles of nasal and mouth tissues in COVID-2019 infection should be investigated, and we need to pay more attention to protect nose and mouth from COVID-2019 infection.


Subject(s)
Severe Acute Respiratory Syndrome
20.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.02.11.20022228

ABSTRACT

A novel coronavirus (2019-nCoV) was first identified in Wuhan, Hubei Province, and then spreads to the other Provinces of China. WHO decides to determine a Public Health Emergency of International Concern (PHEIC) of 2019-nCoV. 2019-nCov was reported to share the same receptor, Angiotensin-converting enzyme 2 (ACE2), with SARS-Cov. Here based on the public single-cell RNA-Seq datasets, we analyzed the ACE2 RNA expression profile in the tissues at different locations of the respiratory tract. The result indicates that the ACE2 expression appears in nasal epithelial cells. We found that the size of this population of ACE2-expressing nasal epithelial cells is comparable with the size of the population of ACE2-expression type II alveolar cells (AT2) in the Asian sample reported by Yu Zhao et al. We further detected 2019-nCoV by polymerase chain reaction (PCR) from the nasal-swab and throat-swab of seven suspected cases. We found that 2019-nCoV tends to have a higher concentration in the nasal-swab comparing to the throat-swab, which could attribute to the ACE2-expressing nasal epithelial cells. We hope this study could be informative for virus-prevention strategy development, especially the treatment of nasal mucus.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar
SELECTION OF CITATIONS
SEARCH DETAIL